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Some mass transfer effects on the wall jet 

By HERBERT FOX AND MARTIN H. STEIGER 
Polytechnic Institute of Brooklyn 

(Received 14 September 1962) 

The wall jet with suction or injection is investigated; an analysis under conditions 
corresponding to similar flows is shown to reduce to an eigenvalue problem. 
Asymptotic solutions valid far from the surface are used to initiate the integra- 
tion and circumvent the usual iteration associated with the two-point boundary- 
value problem. Typical solutions for various rates of suction and injection are 
obtained. It is found that the skin friction decreases with increasing rate of 
suction. Representative thermal solutions are obtained for Prandtl and Lewis 
numbers equal to one, under the special condition that the surface temperature 
is equal to the ambient temperature or that the enthalpy varies monotonically 
from the surface value to the ambient value. 

1. Introduction 
The term ‘wall jet’ has been introduced by Glauert (1956) to characterize 

the flow engendered by a jet blown tangentially or normal to a plane surface and 
spreading out over it, as depicted in figure 1. With the assumption of constant 
density, Glauert studied both radial and two-dimensional wall jets, and both 
laminar and turbulent flows, over an impermeable surface in an otherwise 
stationary atmosphere (see, for example, figures l a  and b). Attention was 
confined to regions far downstream of the origin of the jets. In  these regions 
similar solutions were obtained explicitly for laminar flows. For turbulent 
flows, assumptions as to the nature of the eddy viscosity led to some reasonable 
predictions concerning the approximate similarity of the velocity distribution 
and the rate of growth or mixing of the viscous layer. Experimental results 
(Bakke 1957; George 1959; and Schwarz & Cosart 1961) have shown reasonable 
agreement with the predictions of Glauert concerning turbulent-profile similarity, 
growth and shape. 

Extension of the aforementioned incompressible wall-jet solutions to the 
compressible regime has been carried out by Glauert (1957), Bloom & Steiger 
(1958), and Riley (1958). These investigations have dealt mainly with laminar, 
similar flows. 

A class of boundary-layer flows which are not similar but can be considered 
to be associated with flows of wall-jet character has been studied by Bloom & 
Steiger (1961). These consist of wall jets under the influence of an outer flow with 
constant or variable velocity, ;ls depicted in figures 1 c and d. Bloom & Steiger 
treat the laminar, compressible case and, in essence, observe the effects of per- 
turbing the known compressible wall-jet solution. The perturbation solution is 
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achieved by a series-expansion technique, and the region of validity is restricted 
to flows wherein the external velocity is reasonably small compared to the 
maximum velocity in the viscous layer. 

y 
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FIGURE 1. Schematic diagrams: (a)  two-dimensional wall jet in a motionless ambient, 
over an impermeable surface; (b )  axisymmetric wall jet in a motionless ambient over an 
impermeable surface; (c) wall jet flow in the same direction as outer velocity u, over an 
impermeable surface; (d )  wall jet flow in the opposite direction as outer velocity ue, and 
producing reverse flow, over an impermeable surface; ( e )  wall jet flow in motionless ambient 
over a permeable surface (injection); (f) wall jet flow in motionless ambient over a per- 
meable surface (suction). 

It should be noted that the wall-jet solutions are valid for the jet flow over 
cones, cylinders and wedges. In  the case of a cone the radial wall-jet solution 
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applies, provided that the jet thickness is small compared to the local transverse 
radii of curvature; the streamwise co-ordinate is simply interpreted as the dis- 
tance along the cone generator. Likewise, it is evident that the two-dimensional 
wall-jet solutions can be applied to the flow along a wedge and the flow along 
the generators of cylinders whose transverse radii of curvature are large com- 
pared to the jet thickness. The effects of transverse curvature are being investi- 
gated at the present time; the influence of streamwise surface curvature on wall 
jet flows has not yet been studied. 

This paper studies, by means of 'similar' solutions, the fluid dynamics and 
heat-transfer characteristics of a wall jet spreading out over a permeable plane 
surface in otherwise stationary ambient surroundings, as shown schematically 
in figures 1 e and f .  Particular attention is given to the solution of the velocity 
field, where an eigenvalue problem is posed. Although the eigenvalues are 
restricted on mathematical grounds, it  is shown that there still exist an infinite 
number of similar solutions with each eigenfunction requiring a specified dis- 
tribution of normal velocity along the wall. The Crocco transformation (cf. 
Crocco 1946) and a new dependent variable proportional to the shear are 
employed, so that the equations are in a form convenient for numerical integra- 
tion. The mass density-viscosity ratio is assumed constant. A procedure for 
handling the resulting two-point boundary value problem suggested by Libby 
(1963) and Fox & Libby (1962) is applied to the wall jet in which use is made of 
the asymptotic solutions. 

In  order to present some representative thermal solutions, the mixture is 
assumed to be homogeneous and non-reacting, the Prandtl and Lewis numbers 
are taken to be unity, and the surface enthalpy is taken to be equal to the 
ambient enthalpy, or the enthalpy is assumed to vary monotonically from the 
surface value to the ambient value. 

2. The momentum equation 
Consider the momentum equation arising after application of the Levy- 

Lees transformation (Lees 1956) to the boundary-layer equations with conditions 
of similarity imposed and with zero pressure gradient, 

where a = (s"/u,) (du,/ds") = const. is an eigenvalue, f a  the associated eigenfunc- 
tion, u = u, f:, pp = prpr,  and the transformation variables q and s" are defined by 

with k = 0 or 1 for two-dimensional or radial flow, respectively. Here r is the 
space co-ordinate in the streamwise direction, y the normal co-ordinate, u and w 
are the velocities in the r and y directions, the subscript r represents a reference 
value and p is the coefficient of viscosity. 

In  the case of the wall jet the boundary conditions associated with (1) are 

f a ( 0 )  =fa,, fL(0) =fL(a) = 0, (3)  
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where fa, 5 0 for suction or injection, and the subscript w refers to the condition 
at the wall. 

In  addition to the two-point boundary-value problem posed by (3), (1) also 
implies the existence of an eigenvalue problem. That is, for each value of a 
(which so far is unrestricted in the sense that it may take on any real value) only 
one solution fa  with the correct asymptotic behaviour as 7 --f co can be found. 
Indeed, as 7 -+ co, (1) has a solution of the form fa = A In 7 + B + O( 1/11) + . . ., 
where A = A{ fa(O), a} and B are constants. It is desirable to require that f: decay 
exponentially as 11 + 00, then fa(co) must equal a constant which is possible only 
if A = 0. Two equations for the unique determination of fa(0) and a can be then 
obtained from (l), namely 

(4 a) 

and 
P m  

J O  

where f : ( c o )  = 0 has been assumed. (4a )  is obtained by integrating (1)  from 
7 = 0 to 7 = co, while ( 4 b )  is obtained by multiplying (1 by f a  and then 
integrating. 

There are several interesting features associated with (4). If i t  is assumed that 
fl(0) 0, then (4a )  imposes the restriction a 6 - 8 since fL2, and hence 

are always positive. Furthermore, (4a )  states that if fa(0) = 0 (blow-off), then 
a = -3; from ( 4 b )  it  follows that 

hence f-g must be an asymmetric function varying from f-4 = - f-$(co) at. the 
wall tof-g = f-a(co) as 11 + co. In  addition, for fa(0) = 0 (impermeable surface), 
( 4 b )  yields a = - 1 and (4a )  yields 

f ” (0 )  = JomfI”ldri. 

Clearly, a unique value of CI is attained for each value of fa(0)  and therefore for 
each solution. For brevity, the subscript a will henceforth be omitted. It is 
interesting to note the following group property exhibited by (1) and (3), first 
pointed out by Glauert (1956). If fo(q) is a solution then f l  = Afo(Aq) is also a 
solution for any value of the constant A .  

In  general, a solution to the systems (1)  and (3) can only be achieved by 
numerical integration. However, there are three exceptions, namely, the cases 
where a = - 1-0, a = -0.5,  and f = f, = const. (a arbitrary). As previously 
noted, a = -1-0 corresponds to the flow along an impermeable surface (i.e. 
fw = 0). Under this condition and with f ’ ( 0 )  = f ’ ( m )  = 0, Glauert obtained the 
following solution to (1): 

f = g2, 11 = ln{(l+g+g2)/(1-g))B+2/3tan-1{1/3g/(2+g)}, ( 5 )  
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where, because of the group property, f (a) = 1 is assumed without loss in gener- 
ality. For a = - 0.5, (1) can be integrated to yield 

f ” +flf = const. ( 6 a )  

However, since f ” ( a )  = f ’ (co)  = 0, the constant must also be zero. For ( 6 a )  to 
be valid at the wall, it  follows that f i  = 0; thus a = - + corresponds to blow-off. 
An additional integration of (6  a )  is possible and yields 

f ’  + if2 = &f$, ( 6 b )  

It should be noted that ( 6 )  is similar in form to those equations arising from R 

study of the two-dimensional jet. However, for a complete matching it is neces- 
sary to change independent variables from 7 to, say, {) so that 7 = 0 corresponds 
to 6 = -a and 7 = 0 corresponds to { = +a. A transformation of this type, 
which must necessarily retain the form of ( 6 b ) ,  could not be found. In  the third 
case, it  is seen thatf = fw = const. is a solution to ( 1 )  and satisfies (3). However, 
f = const. requires that the streamwise velocity be identically zero everywhere, 
and therefore corresponds to a trivial solution. 

Reduction to first-order equation and treatment of the two-point 
boundary-value problem 

Following the method of Crocco (1946),  the velocity ratio f ‘  = 6 is introduced 
as the independent variable and a shear function, f ”  = G, is defined. Use of these 
variables in ( 1 )  results in 

dG/dc = - f + ZCI(’/G, (7) 

dfld6 = tP> (8) 

at 6 = 0 (wall), f = f w ;  (9) 

as (+ 0 (outer edge), G + 0. (10) 

subject to the boundary conditions 

Note that ( = 0 a t  both end-points; however, as will be seen, this introduces no 
difficulty in the integration scheme employed. 

The transformation to ( as the independent variable and the introduction 
of G reduces ( 1 )  to a set of two non-linear, first-order differential equations which 
are amenable to standard techniques of numerical integration. However, an 
essential difficulty in numerical analysis is associated with the two-point nature 
of the boundary-value problem. The usual procedure for a given CI is to initiate 
the integration at the wall choosing a value off,. An arbitrary value of G ,  is 
chosen and the integration carried to the outer edge where in general the boun- 
dary condition is not satisfied. Guided iteration must then be performed on the 
value of G, such that (10 )  is indeed satisfied. However, there is no assurance 
that the particular value of a selected will admit a solution. Thus, even for 
these simple equations the solution becomes quite formidable. 

Libby (1962),  and more recently Fox & Libby (1962),  employed a different 
technique in treating a two-point boundary-value problem; they used the 
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asymptotic solution valid as 7 --f co. Consider then the solution of (1) for 4 
large using the following appropriate approximations: 

f - f m + f l ,  f ' - f 1 7  f "  =!f:7 (11) 

where f m  = const., fl 4fm, and fi, f[ < 1. Insertion of (11) in (l), and neglecting 
products of fl and its derivatives results in 

fY+ fm f;'= 0. 

f -fm-k-lfm, G 2 . f m t .  

Integration yields 

The asymptotic solution given by (13) may be employed as follows. Choose 
va.lues of f m  and < with [ 4 fm and compute values off and G .  The integration 
of (7) and (8) is then carried out for increasing values of 5 until G -+ 0. At G = 0- 
a Taylor expansion is performed and new starting values are obtained for G = Of. 
It should be noted that this singularity at  G = 0 is of the form G2 = a + bfl with 
f finite. The integration is then carried out for Ag < 0 to fl  = 0. The only question 
that remains is whether, in fact, G -+ 0 as ,$ increases. Inspection of (7) for G < 0 
reveals that for all cc < 0, G --f 0 as [ increases. Hence, use of this integration 
scheme allows the following limits on a to be inferred: 

-co < a < - 1: f, > 0, suction; 
cc =-1: f w =  0; 

a = -1. 2 .  blow-off; 
- 1 < OL < -4: fw < 0, blowing; 

- & < a < O :  G w < O ;  

a 3 0: solution does not exist, 

Thus, by use of the asymptotic solution, iteration is eliminated and every com- 
puter run can be considered a valid solution. Note that for any cc within the 
described limits, once a solution is given, any f, may be obtained by use of the 
group property. 

Once a solution is computed a final integration is necessary to obtain the 
profiles as functions of 7. In  general, 7 may be written as 

However, to integrate to the outer edge this must be altered as follows: 

where & is the point where G = 0, fl, is the initial value of fl  (at the outer edge), 
and sl/flc7 s2/flc < 1. The second integral in (15) may be evaluated about the 
singularity and yields 
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where Go denotes the value of G at 6 = <c-el. The numerical integration of (7) 
and (8) was performed using the Runge-Kutta integration scheme outlined by 
Gill (1951). In  addition, a step-size criterion was programmed to  allow the 
computer to choose its own step-size automatically. The solutions were carried 
out on a Bendix G-15 D computer where the running time per case was approxi- 
mately 35 minutes. 

Presentation and discussion of results 

All the solutions were obtained with f m  = 1 and an initial value of = 0.01. 
Note again that the value of f m  is arbitrary and can be altered by use of the 
scale factor A .  The suction results for various values of a < - 1 are presented in 

-- 0.2 ' I I I 
(4 E 

(b)  
FIGURE 2 .  (a )  Shear function with suction. ( b )  Stream function with suction. 

figures 2 a and b;  these give the dependent variables G and f vs the velocity ratio 6. 
The results corresponding to injection, - 1 < a < - 9, are presented in figures 
3 a and b. It should be noted that while the computer can obtain a solution with 
a = -+ corresponding to blow-off, the transformation to 7 becomes indeter- 
minate, since at the wall G = 0. It is interesting, however, to see the profiles 
obtained from the computer run; f and G as obtained are also shown in figures 
3 a and b. Some typical velocity profiles as functions of 7, computed by (15), 
are shown in figures 4 a and b. With f m  = 1.0, the eigenvalues of theresulting solu- 
tions f ,  and G, are shown in figure 5 and listed in table 1. In  contradistinction 
to the results for a flat plate, it  is noted that as f w  increases positively corre- 
sponding to  ( -a )  > 1, the shear parameter @, reaches a maximum and then 
decreases. This can be thought of as due to the decrease of the maximum velocity 
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which dominates the decrease in boundary-layer thickness due to the imposed 
suction. These two effects are clearly seen from the velocity profiles presented 
in figures 4 a  and b. 
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FIGURE 3. (a)  Shear function with injection. (b )  Stream function with injection. 
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FIGURE 4. (a) Velocity profiles with suction. ( b )  Velocity profiles with injection. 
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-a f w  G ,  
Suction 50.0 0.976 0-0235 

10.0 0-892 04688 
5.0 0.776 0.117 
2.0 0.472 0.208 
1-5 0.305 0.232 
1-25 0.193 0.235 

Impermeable wall 1.0 0.0 0.222 

Injection 0.75 - 0.298 0.186 
0.70 - 0.379 0.159 
0.60 - 0.591 0.106 
0.55 - 0.749 0-0607 
0.50 - 1.0 0.0 

TABLE 1. Injection rate and shear parameter for f, = 1.0. 
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t;" 
0 1  

0 
-1.0 - 0 8  -0.6 - 0 4  -02  0 0 2  0 4  06 0 8  
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fuJ 
FIGURE 5. Variation of shear function with suction and injection. 

It is pertinent now to obtain relationships for some of the important physical 
parameters. If ;t uniform reference flow is assumed then, from ( 2 b ) , t  

(g/gc)  = (r/yc)(zk+1)/(1-4 (17) 

and gc = [(I -a)  (prprarc / (2k  + 111 rc2k+1, (18) 

( 4 a r J  = (s"/gcP* (19) 

where ur is evaluated from the definition of a and is found to be 

t It should be pointed out that the r is to be interpreted as the distance along the wall 
for two-dimensional flows, k = 0, or as the radial distance from the jet for axisymmetric 
flows, x: = 1. 
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Here the subscript c refers to values at  a reference station s,. By (17) ,  (19) can - 

be rewritten in terms of r as 
(u,/u,.) = ( r/rc)a(2k+1)/(1-a) 

and the velocity in jet can be shown to be 

(u/urC) = f r ( r / , c )a (2k+ l ) ’ (1 -a ) .  (21) 

From the transformation given by ( 2  a, b )  it  can be shown that the y-velocity 
component a t  the wall, ww, is given by 

w, = - p, u, r k (  2d)-:f( 0).  
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FIGURE 6. Distribution of skin friction. Cfo = 

Using (17), (18) and (20), this reduces to 

where Rt = ,uwu,[(2k + 1 ) / 2 P T P T ~ T C ~ C 1 * .  

cf = p2 G ( 0 )  ( 1  - a)-& (r/rc)-(za+2k-l)i2(l-a), 

The skin friction coefficient, cf, is given by 

(23) 

where P2 = [2,4(2k + 1)/pTurc]4 rLl--2k)/2. With k = 1 (axisymmetric flow) and 
various values of a, cf/cfo was computed from (23), where cfo is the skin friction 
obtained for zero mass transfer, a = - 1,  fw = 0. This is shown in figure 6. As a 
decreases below -4 the skin friction first increases and then decreases signi- 
ficantly for the larger rates of suction and for reasonable distances downstream. 
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It is pointed out, however, that for suction cf /cfo increases monotonically with 
r/rc and that, as CL decreases, the exponent increases to a limit of + 1 for k = 1. 
Hence, at  some large finite value of r/rc the skin friction is larger for the larger 
rates of suction. 

If incompressible flow is assumed, the boundary-layer thickness 6 can be 
shown to be 

6 = rle( 1 - , ) tP3(r / r , ) {~(2k+l ) ( l -2a)} -k ,  (24)  

where P! = [2rcpu,/(21% + 1 )  prurc]&, and re is the value of 7 at the outer edge of the 
boundary layer and is chosen, say, when [ = 0.001 (at the outer edge). 

3. The energy equation 
Some features of similar thermal solutions, for Prandtl and Lewis number 

equal to unity, are now examined. The simplest solution is obtained for a very 
special case, namely, that in which H, = He = He,, where His the total enthalpy 
and the subscript e refers to conditions at the outer edge of the boundary layer. 
In  this case the Crocco integral H = A + Bu (with A and B constants) can be used 
to satisfy the boundary conditions, yielding 

where Hm, is the value of H evaluated at an initial station, re, and at the point 
where f' = f;,,. In  this case the surface heat-transfer rate is given by 

qwirw = - (Hmc-Hew)lurcf&ax (26)  

and by (qW/qw,) = (r/rc)(-6ak-4a+1)/2(1-") (27 a )  

where - 

Here 7, represents wall shear stress and h is the thermal conductivity. 

and ( 2  b )  to the usual boundary-layer energy equation and assuming that 
For cases in which He =t= H, similar solutions can be derived by applying (2a )  

H-He  = (H,-H,)g(n), H, = Hw(s"), He = const. (28)  

Then it follows that 
S dH, 

9'' + f g '  - 2Nf ' g  = 0,  where N ____ -- . H,-H, ds 

Similar solutions are obtained from (29) only if 

N = const. (30) 

A different solution for g (denoted by g N )  is obtained from (29) for each pre- 
scribed value of N .  It can be noted that (29) is linear a.nd any number of these 
solutions may be summed to form an additional solution. For each N ,  the follow- 
ing boundary conditions must be satisfied: 

g ( 0 )  = 1.0, g(c0) = 0. (31) 
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Combination of (28), (29) and (30) leads to the following permissible form of 
non-isothermal surface eiithalpy : 

Hw = He + (H, - He), (a j~? , )~ .  (32) 

There is no restriction on the value of N ;  it may be positive, negative, zero and 
not necessarily an integer. 

The case of constant surfrce temperature is given by N = 0,  for which (29) 
becomes 

which has the solutioii 
g,”+fg; = 0, 

where 

(33) 

It can be shown that go varies monotonically from 1 to zero. Therefore H varies 
monotonically from H, to He. This severely restricts the regime of usefulness of 
this solution; the enthalpy profile cannot be prescribed arbitrarily at an initial 
station, but must be accepted as it is obtained under the postulate of similarity. 
Thus, one must exclude those cases in which the initial stagnation enthalpy of 
the wall jet is less than He or greater than H,; at least up to the station where the 
enthalpy profile has deteriorated to an acceptable form. Furthermore, in this 
case heat must be passing from the surface into the stream when H > He. Note 
that these restrictions did not apply in the important special case (He = H,) 
given previously. The case of the non-similar thermal field downstream of an 
arbitrary enthalpy profile can be treated by approximate, iterative or numerical 
techniques. However, the present purpose is to explore only the properties of 
the similar solutions. 

In  the general non-isothermal case the heat flux may be expressed in terms of 
similar solutions as follows : 

-4wx = (P,luwu,H,rk/(2s):)g:,(o), (35) 

where (4zu/4WC)N = ( r c / V ,  136) 

where 
2 k + 1  - 2 a k - 2 a + 1  

2(1--a) 2(1--a) ) 

/j’= 2 N - - - -  

The quantity qw, can be obtained by evaluating (35) at the station r = r,, 
q being the heat flux. For the non-isothermal case lengthy numerical procedures 
are required for the solution of the two-point boundary-value problem. How- 
ever, for one particular value of N ,  namely, N = - $, a closed form solution is 
possible. For this case (29) reduces to 

(37) g” + fg’ + f ’g = 0, 

which can be integrated to give 
9‘ +fg = 0, 

where g’(0) = - fw-  
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Now (38) cam be integrated to yield 

For N = - +, the distribution of enthalpy along the surface is given by 
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